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• Proposed a new speech task using dual-reference audio for precise timbre/style control & novel combinations.

• Control-TTS model recombines speech traits for new timbre-style mixes, matching SOTA performance.

• Multi-encoder design validated: effectively recombines timbre/style features via ablation studies & t-SNE.
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A B S T R A C T

Natural and personalized speech interaction is one of the core requirements for advancing Multimodal Human-

Computer Interaction (HCI), with applications widely seen in smart home devices, voice assistants, and mobile 

devices. In recent years, the demand for speech in the HCI field has shifted from basic speech generation to precise 

customization of speaker timbre and speaking style, aiming to achieve more intuitive and immersive multimodal 

human-computer interaction. However, existing speech personalization technologies have significant limitations: 

zero-shot speech synthesis methods lack the capability for style control, while traditional style-controllable syn­

thesis methods fail to accurately specify speaker timbre, making it difficult to balance personalization between 

speaker timbre and speaking style. To address this issue, we define a new task: Controllable Timbre Cloning and 

Style Replication with Reference Speech Examples. This task aims to directly control speaker timbre and speak­

ing style through two reference speech examples, allowing timbre cloning and style replication to generate new 

timbre-style combinations. To tackle this task, we propose the Control-TTS model. This model utilizes distinct 

reference speeches to separately control the timbre and speaking style features of the speaker in the synthe­

sized audio, enabling free combinations of timbre and style. This approach generates synthetic speech with rich 

expressivity, providing a more flexible and customizable solution for speech personalization in HCI scenarios. 

Our experiments on the VccmDataset demonstrate that Control-TTS achieves comparable or state-of-the-art per­

formance in terms of metrics such as naturalness mean opinion score (NMOS), word error rate (WER), speaker 

similarity, and style similarity. Our demo is available at https://progressivetts.github.io/Control_TTS/.

1 . Introduction

Natural and personalized speech interaction serves as the corner­

stone for advancing multimodal human-computer interaction (HCI) [1–

3], with applications that permeate smart home devices, voice assistants, 

and mobile devices. This technology bridges the modal gap between 

text and audio, converting text-based information into expressive and 

rich speech output. It is an essential interface for intuitive multimodal 

human-computer interaction. As speech interaction technologies evolve, 

the naturalness, expressiveness, and emotional adaptability of generated 

speech have improved significantly, enabling compelling performances 

in scenarios such as storytelling, virtual assistance, and educational 

applications.
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In recent years, HCI demands have shifted beyond basic fluent 

speech generation toward the precise customization of speaker tim­

bre and speaking style. Users now seek not only intelligible speech 

output but also the ability to tailor vocal characteristics to specific 

personas and contextual styles. This shift presents new challenges for 

personalized speech technology. The ideal solution would allow in­

dependent control over speaker timbre (capturing the unique vocal 

identity of a speaker) and speaking style (reflecting expressive nuances 

such as emotion or intonation) while preserving the accuracy of the

content.

Currently, several research approaches have emerged in controllable 

speech synthesis, but each has its own limitations. Zero-shot speech 

synthesis [4–7] can only transfer the emotion-timbre combination from 

reference speech, without the ability to freely specify arbitrary styles or 

modify the emotional expression of reference speech during synthesis 

[8–11]. Although several studies employ emotion IDs to control emo­

tion types [12], this approach only enables coarse-grained emotional 

control and does not capture subtle variations within the same emotion 

category. Similarly, style-controllable speech synthesis systems [13–15] 

can only modulate speech styles while being unable to specify speaker 

timbre. Although speaker IDs have been adopted for timbre control in 

several works [16], this approach is constrained by limited speaker di­

versity and fails to generate sufficiently varied timbres. The fundamental 

flaw of these two types of work lies in their inability to effectively de­

couple timbre and style, resulting in insufficient control over synthesized 

speech.

In addition, some works use text descriptions to control the speak­

ing style of synthesized speech [13,14], or first extract text descriptions 

from style reference audio and then use the extracted text descriptions 

to guide the synthesis of stylized speech [17,18]. However, describing 

speech styles with words is insufficient to fully and comprehensively 

represent the style patterns. The lack of accuracy in descriptions can 

lead to the failure to accurately convey information about the origi­

nal speech style, resulting in differences between the generated speech 

style and that of the original audio. Meanwhile, this process also in­

creases the operational difficulty of the system, imposes a burden on 

users, and hinders the promotion and popularization of this technol­

ogy. These limitations stem from a core oversight: treating style as a 

text-encodable attribute rather than a distinct perceptual feature that 

requires independent modeling.

To address these inherent limitations, our proposed Control-TTS di­

rectly controls the speaker’s timbre and speaking style of the synthesized 

speech through reference audio, and can specify arbitrary speaking 

content, as shown in Fig. 1. Unlike single-reference zero-shot TTS, 

our dedicated speaker encoder separates speaker-specific features from 

the reference speech, while the style encoder independently captures 

prosodic and emotional nuances, thereby eliminating the binding be­

tween timbre and style. Compared with text description-based methods, 

our design does not require explicit text descriptions. By directly model­

ing style as perceptual embeddings, it preserves fine-grained style details 

and reduces the burden on users. For methods based on discrete emo­

tion IDs, our continuous style embedding space naturally supports subtle 

style variations because it learns from perceptual similarity rather than 

relying on predefined categories.

Our contributions are as follows:

• We identify the demand for personalized customization of speaker 

timbre and style in the field of multimodal human-computer in­

teraction, establishing the task of Controllable Timbre Cloning and 

Style Replication with Reference Speech Examples. This task lever­

ages two reference speech samples to control both speaker timbre 

and speaking style more precisely, enabling the generation of novel 

timbre-style combinations.

• We propose Control-TTS, a novel model that generates new combi­

nations of speaker timbre and speaking style by effectively recom­

bining characteristics from speech examples. Experimental results 

Fig. 1. Schematic diagram of Control-TTS. Control-TTS extracts the timbre of 

speaker reference speech and the style of style reference speech and synthesizes 

the final audio. Traditional TTS models can only adopt the style and emotion of 

the original reference speech.

demonstrate that Control-TTS exhibits comparable or state-of-the-art 

performance on this task.

• We conduct comparative experiments on the number of encoders, t-

SNE clustering, and other experiments. We also explore the impact 

of reference audio length, background noise, training data volume, 

and cross-lingual reference audio on the quality of synthesized au­

dio. These experiments demonstrate that Control-TTS uses multiple 

encoders to model speech from multiple perspectives, enabling more 

effective extraction of timbre and style from audio during speech 

synthesis.

2 . Related work

We propose the task of Controllable Timbre Cloning and Style 

Replication with Reference Speech Examples. The related work of this 

new task includes zero-shot speech synthesis, style-controllable speech 

synthesis, and previous controllable speech synthesis tasks under the 

guidance of text descriptions. Below, we introduce previous works in 

these three parts and explain the differences between our work and these 

existing works.

2.1 . Zero-shot TTS

Zero-shot speech synthesis refers to synthesizing the voice of an un­

seen speaker with only the guidance of a few seconds of voice prompts. 

This technology is also called voice cloning. With the introduction of 

different model architectures, the effectiveness of zero-shot speech syn­

thesis is also continuously improving. VALL-E [4] uses a discrete codec 

representation to combine autoregressive and non-autoregressive mod­

els in a cascade manner, retaining the powerful contextual functionality 

of the language model. NaturalSpeech2 [5] replaces discrete neural 

codec tags with continuous vectors, introducing in-context learning into 

the diffusion model and further improving the quality of synthesized 

speech. Mega-TTS [6] uses traditional Mel-spectrograms to decouple 

timbre and prosody and employs autoregressive methods to further 

model prosody. VoiceBox [7] is a non-autoregressive stream matching 

model that is trained to fill in speech given speech context and text. It 

is worth noting that although zero-shot speech synthesis has made great 
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Table 1 

Functional comparison of Control-TTS and other TTS systems.

progress, this technology can only control the timbre of the synthesized 

speech, but not the style of the speech. In contrast, our Control-TTS 

achieves control over both timbre and style at the same time, thereby 

addressing this limitation.

2.2 . Style-controllable speech synthesis

Several studies control the style of synthesized speech through text 

prompts. The text description usually includes gender, pitch, speaking 

speed, emotion, etc. In this type of study, the model understands the 

text description and converts it into the style of synthesized speech, 

which has certain cross-modal capabilities. PromptTTS [13] uses man­

ually annotated text prompts to describe the five attributes of speech 

(gender, pitch, speaking speed, energy, and emotion) and trains the 

model on two synthetic speaker datasets and LibriTTS [19]. InstructTTS 

[14] uses a three-stage training method to capture semantic information 

from natural language style prompts and uses the semantic informa­

tion as conditional input for the TTS system. Textrolspeech [15] regards 

style-controllable TTS as a language modeling task and uses a codec ar­

chitecture based on VALL-E [4]. PromptTTS2 [20] proposes using LLM 

to automatically create text descriptions of speech style and adopts a 

diffusion model to capture the one-to-many relationship between speech 

and text descriptions. It is worth noting that existing style-controllable 

speech synthesis systems are either fixed-speaker speech synthesis sys­

tems or can only specify a limited number of timbres through SpeakerID, 

lacking the capability of timbre cloning. Our Control-TTS can specify the 

timbre of any speaker through reference speech.

2.3 . Speaker-specific and style-controllable TTS

To address the limitations of zero-shot TTS and style-controllable 

speech synthesis, several studies suggest using textual descriptions to 

control the speaking style or the speaker’s timbre. Unistyle [17] uses 

two reference speech samples to control the language style and speaker 

timbre, respectively. The speaker’s timbre is directly controlled by the 

timbre reference speech, and the style reference speech must be con­

verted into a text description before being re-entered into the model. 

After that, the style of the synthesis speech is controlled, which is equiv­

alent to a cascade synthesis process. ControlSpeech [18] directly controls 

the synthesized timbre through timbre reference speech, but this model 

also controls the style of speech through text description.

We argue that describing speech style in words is not enough to fully 

and comprehensively reflect the style, during which the speech style 

may lose accuracy due to inaccurate or incomplete descriptions, which 

in turn causes the synthesized speech style to deviate from the style of 

the original speech. At the same time, for users, a relatively complete 

and comprehensive description of the speech style is required to synthe­

size an ideal speech. This requirement raises the bar for deploying the 

system and is not conducive to the widespread dissemination of related 

technologies. Our Control-TTS proposed in this paper directly controls 

the speaking style through reference speech, avoiding this error while 

improving the convenience of using the model.

As shown in Table 1, we present a functional comparison be­

tween Control-TTS and other speech synthesis systems. Compared to 

other models, Control-TTS is capable of simultaneously achieving voice 

cloning and style control. Moreover, during the style control process, 

it utilizes audio references, which can more accurately describe style 

details compared to text descriptions.

3 . Proposed methods

In this section, we first introduce the overall structure and inference 

process of Control-TTS, demonstrating how the model achieves control­

lable speech synthesis in terms of speaker style and timbre. Then, we 

describe the role of each module in the inference process, along with its 

inputs and outputs. Finally, we discuss the training process of the model 

and the rationale behind this training approach.

3.1 . Overview

Fig. 2 shows the overall architecture of Control-TTS. The model’s 

inputs include:

(1) A speaker reference speech 𝑅spk used to control the timbre of the 

synthesized speech.

(2) A style reference speech 𝑅sty used to control the speaking style of 

the synthesized speech.

(3) A phoneme sequence 𝑃 = [𝑃1, 𝑃2,… , 𝑃𝑛] derived from text, where 

𝑛 is the length of the phoneme, used to control the content of the 

synthesized speech.

The model’s output is the synthesized speech generated under the 

control of these three inputs.

Our processing pipeline for raw speech samples comprises six key 

stages. First, audio samples are read exclusively in mono-channel for­

mat. Second, all speech signals are uniformly resampled to 24 kHz. 

Third, audio length standardization is performed: segments shorter than 

0.6 s are zero-padded to meet the minimum duration threshold, while 

all recordings are prefixed and suffixed with 5000 zero-valued sam­

ples (silence segments). Fourth, Mel-spectrograms are extracted using 

80 Mel-frequency bands. Fifth, spectral normalization is applied through 

logarithmic compression and standardization of the Mel-spectrograms. 

Finally, during training, reference audio segments undergo random crop­

ping with a maximum Mel-spectrogram frame length constrained to 192 

frames.

The model’s Speaker Encoder encodes 𝑅spk to extract the timbre 

embedding 𝑆t. Subsequently, 𝑆t will be fed into the Decoder to guide 

the synthesis of the audio timbre.

The model’s Prosody Encoder and Duration Encoder process 𝑅sty to 

generate embeddings for the prosody and duration predictors within 
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Fig. 2. The overall structure of Control-TTS. In the first stage of training, only the modules in the dashed box with a blue background participate, and in the second 

stage is the joint training of all modules occurs. The dotted arrows only participate in the first stage of training and do not participate in the second stage.

the style predictor. The style text encoder additionally provides tex­

tual encodings to the style predictor, which estimates phoneme du­

rations, normalized fundamental frequency (F0), and energy (E) tra­

jectories. These acoustic features exhibit strong content dependence 

in speech synthesis. The predicted durations, F0, and energy param­

eters are subsequently fed to the Decoder for style-controlled speech

generation.

The Text Adaptor consists of two components: the Speaker Text 

Encoder and the Text Aligner. The Speaker Text Encoder converts 

phoneme sequences into phoneme embeddings. During inference, 

phoneme durations are predicted by the Duration Predictor, while train­

ing employs the Text Aligner to extract ground-truth durations from 

reference speech. These durations form an alignment matrix 𝐴𝑛∗𝑙, where 

𝑛 denotes the phoneme sequence length and 𝑙 represents the Mel-

spectrogram frame count. The phoneme embeddings are then aligned 

through matrix multiplication with 𝐴 before decoder integration, en­

abling accurate audio content synthesis.

This describes the Control-TTS framework for controllable speech 

synthesis. The subsequent sections detail the individual sub-modules.

The above is the overall process of Control-TTS for controllable 

speech synthesis. In the following sections, we will introduce the details 

of each sub-module.

3.2 . Control-TTS module introduction

3.2.1 . Encoder

Control-TTS contains three types of encoders, which respectively en­

code 𝑅sty, 𝑃 , and 𝑅spk. The following sections introduce each of these 

components in detail.

Style Speech Encoder

The Style Speech Encoder employs parallel prosody and duration 

encoders to extract prosodic (𝑆p) and duration (𝑆d) representations 

from reference Mel-spectrograms 𝑀sty, capturing normalized F0, en­

ergy (E), and phoneme duration information. The architecture imple­

ments a hierarchical residual network with four bottleneck residual 

blocks featuring spectral-normalized convolutional layers and instance 

normalization. Global adaptive pooling generates 512-channel features, 

projected to 128-dimensional embeddings 𝑆p and 𝑆d. The specific 

structure of this module is shown in the Fig. 3(a).

Speaker Encoder

The Speaker Encoder’s function is to extract the speaker’s timbre 

information. Given the Mel-spectrogram of 𝑅sty, it provides a speaker 

embedding 𝑆t. Its structure is the same as the style encoder, and it also 

includes four layers of residual networks with a bottleneck structure. 

The specific structure of this module is shown in the Fig. 3(a).

Style Text Encoder

The Style Text Encoder consists of a pre-trained phoneme-level Bert 

[23] and a linear layer, with which we can obtain a fine-grained text 

embedding of the phoneme context.

3.2.2 . Text adaptor

Comprising Speaker Text Encoder and Text Aligner, this module 

processes phoneme sequences through Conv1D layers, layer normal­

ization, and LSTM to generate phoneme embeddings 𝑃 . The Text 

Aligner we used is AuxiliaryASR.1 This is a phoneme-level ASR model 

trained on English speech, which can provide phoneme-level align­

ment 𝐴𝑛×𝑙 for reference speech and phoneme sequences. The model 

integrates convolutional neural networks with two joint decoders, 

namely Connectionist Temporal Classification (CTC) and attention-

based sequence-to-sequence (S2S) models. This hybrid architecture 

leverages the training stability of the CTC and the high accuracy of 

the S2S models, achieving automatic speech recognition at the phoneme 

level. Temporal-aligned embeddings are computed as:

𝑃 ′ = 𝑃 ∗ 𝐴 (1)

3.2.3 . Style predictor

The Style Predictor generates normalized F0 𝐹0𝑝𝑟𝑒𝑑 , energy 𝐸𝑝𝑟𝑒𝑑 , 

and phoneme durations by fusing text embeddings with prosodic 𝑆p and 

duration 𝑆d style representations. Normalized F0 preserves rhythmic 

patterns while reducing speaker-specific characteristics to facilitate 

style-speaker disentanglement. Energy represents aperiodic compo­

nents, and phoneme durations determine speech rate - collectively 

1 https://github.com/yl4579/AuxiliaryASR.
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Fig. 3. The internal structures of audio encoder, predictor, and decoder.

defining speech style. The specific structure of this module is shown 

in the Fig. 3(b).

The duration predictor integrates text embeddings with 𝑆d via LSTM 

with adaptive layer normalization, then generates duration predictions 

𝑑𝑝𝑟𝑒𝑑 through a bidirectional LSTM and linear layer. Ground-truth 

durations 𝑑𝑔𝑡 from the Text Aligner provide supervision:

𝐿𝑑𝑢𝑟 = 𝐿1𝑙𝑜𝑠𝑠(𝑑𝑝𝑟𝑒𝑑 , 𝑑𝑔𝑡) (2)

The prosody predictor estimates 𝐹0𝑝𝑟𝑒𝑑  and 𝐸𝑝𝑟𝑒𝑑  using a shared ar­

chitecture. Text embeddings and 𝑆p are fused through an LSTM with 

adaptive layer normalization, then aligned with phoneme sequences via 

matrix multiplication with the alignment matrix 𝐴 to produce temporal 

features 𝑀p.

Subsequent processing employs two Adaptive Instance 

Normalization (AdaIN) layers for deep style integration, with Conv1D 

layers and residual connections enhancing nonlinearity. The final 

predictions are supervised using z-score normalized ground-truth:

𝐿𝑛𝑜𝑟𝑚𝐹0 = 𝑀𝑆𝐸(𝐹0𝑔𝑡, 𝐹0𝑝𝑟𝑒𝑑 ) (3)

𝐿𝐸 = 𝑀𝑆𝐸(𝐸𝑔𝑡, 𝐸𝑝𝑟𝑒𝑑 ) (4)

3.2.4 . Decoder

The decoder synthesizes the final audio output 𝑤𝑎𝑣𝑠𝑦𝑛 from three 

input components: prosodic features comprising normalized 𝐹0 and en­

ergy content features represented by the aligned phoneme embedding 

𝑃 ′, and speaker characteristics encoded in the timbre embedding 𝑆𝑡 as 

follows:

𝑤𝑎𝑣𝑠𝑦𝑛 = 𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝑃 ′, 𝐹0𝑝𝑟𝑒𝑑 , 𝑁𝑝𝑟𝑒𝑑 , 𝑆𝑡) (5)

The decoder’s structure is similar to that of HiFiGAN [24]. Unlike the 

process of recovering waveforms from Mel-spectrogram features, this 

work focuses on upsampling from normalized 𝐹0 and other features. To 

achieve this, we concatenate normalized 𝐹0, energy 𝐸, and phoneme-

aligned features along the speech frame duration dimension. After that, 

we incorporate AdaIN layers in the residual network to fuse speaker-

specific features. The fused features are then fed into the vocoder for 

audio synthesis. We utilize the multi-resolution discriminator (MRD) and 

the multi-period discriminator (MPD), the same as [25]. The specific 

structure of this module is shown in the Fig. 3(c).

In our experiments, we found that the generator tends to average 

high-frequency harmonics, causing a reduction in the speaker’s timbre. 

To address this issue, we implemented multiple sub-discriminators with 

FFT sizes of 2048 and varying window lengths, enhancing the decoder’s 

sensitivity to high-frequency information. We trained the decoder using 

a combination of adversarial loss function 𝐿𝑎𝑑𝑣, feature matching loss 

𝐿𝑓𝑚, and Mel-spectrogram reconstruction loss 𝐿𝑚𝑒𝑙, where 𝐷 represents 

the two discriminators MPD and MRD. 𝐷𝑖 and 𝑁𝑖 denote the feature 

values and the number of features at the i-th layer of the discriminator, 

respectively. 𝑀𝑤𝑎𝑣𝑠𝑦𝑛  represents the computation of the Mel-spectrogram 

for the synthesized speech.

𝐿𝑎𝑑𝑣(𝐷,𝐺) = 𝐸
[

(

𝐷
(

𝑤𝑎𝑣𝑠𝑦𝑛
)

− 1
)2)

]

+ 𝐸
[

(

𝐷
(

𝑤𝑎𝑣𝑠𝑦𝑛
))2)

]

+ 𝐸
[

(𝐷 (𝑅))2
)]

(6)

L𝐹𝑀 (𝐺;𝐷) = E(𝑤𝑎𝑣𝑠𝑦𝑛 ,𝑅)

[ 𝑇
∑

𝑖=1

1
𝑁𝑖

‖𝐷𝑖(𝑅) −𝐷𝑖(𝑤𝑎𝑣𝑠𝑦𝑛)‖1

]

(7)

𝐿𝑚𝑒𝑙 = 𝐿1𝑙𝑜𝑠𝑠
(

𝑀𝑠𝑝𝑘,𝑀𝑤𝑎𝑣𝑠𝑦𝑛

)

(8)

3.3 . Training process

Our training process is divided into two stages. In the first stage, 

we only train the speaker encoder, the speaker text encoder in the text 

adaptor, and the decoder. The training process is shown in Fig. 2, where 

the modules within the dashed box represent the first phase of training.

The training task at this stage is speech restoration. The speaker en­

coder extracts the timbre embedding from the speaker reference. The 

input of the text adaptor is the text corresponding to the speech, and the 

text is encoded to align with the timbre. In addition, in the first stage, we 

do not train encoders related to style prediction, but only train encoders 

to extract timbre. Therefore, in this stage, we extract the normalized 𝐹0
and Energy 𝐸 of the speaker reference in advance and directly input the 

ground truth into the decoder during the synthesis process. Finally, the 

decoder synthesizes the restored speech, and the synthesized speech is 

used to calculate the loss with the speaker reference, thus completing 
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the first stage of training. We use a pre-trained model2 to extract the 

normalized 𝐹0 and Energy 𝐸 of the speech.

The reason we designed the first stage in this way is that we want to 

use general speech synthesis tasks to first train an encoder-decoder struc­

ture with basic speech synthesis capabilities. This structure will serve as 

the basis for the second stage of training. By adding encoders that extract 

duration information and prosody information, respectively, we will 

eventually obtain a model that can perform controllable speech synthe­

sis tasks. This staged training paradigm enables the gradual increment of 

model parameters, thereby circumventing redundant computations and 

enhancing training efficiency. If a single-stage training strategy is em­

ployed, the model achieves performance equivalent to that of two-stage 

training. However, the number of training epochs needed is slightly 

higher. Specifically, our model undergoes 50 epochs of training in the 

two-stage paradigm, whereas 60 to 70 epochs are required for the single-

stage approach to reach convergence. A similar training process has also 

been adopted in other related works [21,26].

In the second stage, we jointly train the entire model by adding a 

prosody encoder, a duration encoder, a style text encoder, and a style 

predictor, based on the first stage, as shown in Fig. 2. In this stage, nor­

malized 𝐹0, 𝐸, and duration are predicted by the style predictor, and we 

use the ground truth extracted in the first stage as the supervision signal 

for these variables. In the training stage, the style reference and speaker 

reference are the same speech, so we can still use the synthesized speech 

and speaker reference to calculate the loss as the final loss:

𝐿𝑓𝑖𝑛𝑎𝑙 = 𝐿𝑑𝑢𝑟 + 𝐿𝑚𝑒𝑙 + 𝐿𝑎𝑑𝑣 + 𝐿𝐹𝑀 + 𝐿𝑛𝑜𝑟𝑚𝐹0 + 𝐿𝐸 (9)

4 . Experimental setup and evaluation metrics

4.1 . Datasets

As shown in Table 2, the datasets we use to train Control-TTS in­

clude: LibriTTS [19], ESD [27]. LibriTTS is a multi-speaker English 

corpus for TTS. We use the two high-quality subsets, train-clean-360 

and train-clean-100, as our training set. This part of the data contains 

115 h of speech from 1151 speakers. We use dev-clean and test-clean as 

the validation set and test set, respectively. The ESD (Emotional Speech 

Database) is a bilingual dataset containing both Chinese and English 

speech. It includes 350 parallel utterances spoken by 10 native English 

speakers and 10 native Chinese speakers, covering five emotional cate­

gories: neutral, happy, angry, sad, and surprise. The dataset consists of 

over 29 h of speech recorded in a controlled acoustic environment, de­

signed to support multi-speaker and cross-lingual emotional TTS studies. 

We use the English part and divide it into the training set, the validation 

set, and the test set in the ratio of 8:1:1.

During the testing of Control-TTS and other comparative models, we 

utilized a self-constructed dataset to ensure that the audio within the 

test dataset had not been encountered by any of the models during their 

training phases. This part of the data is selected from the VccmDataset 

proposed by TextrolSpeech [15], with 1000 utterances chosen for WER 

evaluation and 20 utterances serving as style references and speaker 

references for subjective evaluation. The selection criteria were clear 

speech and good audio quality. Additionally, our test cases included 

some with distinct tones, aiming to assess the models’ style cloning 

capabilities.

4.2 . Evaluation metrics

For subjective evaluation, we employed the Naturalness Mean 

Opinion Score (NMOS) to assess speech quality and naturalness. We 

employed the Speaker Similarity Mean Opinion Score to assess the tim­

bre similarity with the Speaker Reference and the Style Similarity Mean 

Opinion Score to evaluate the style similarity with the Style Reference. 

2 https://github.com/yl4579/PitchExtractor

Table 2 

Corpus used to train the model.

Corpus Speech number Speaker number Hours

LibriTTS (Train-clean-460) 149,736 1151 115

ESD (English) 17,500 10 15

Both Speaker Similarity and Style Similarity adopt the same human 

subjective scoring method as NMOS. These three metrics belong to the 

subjective evaluation category. We selected 15 annotators independent 

of the model training and development process to conduct blind scoring 

on speech synthesized by Control-TTS and baseline models. They rated 

each metric on a scale of 1 to 5, and we calculated the average scores 

for each model to determine the final scores.

For objective evaluation, we employed the Word Error Rate (WER) 

to evaluate the clarity of the synthesized speech, reflecting the quality of 

the synthesized speech. We employed the Whisper [28] speech recogni­

tion model to transcribe the test speech, comparing the recognized text 

with the ground truth text to calculate the WER.

4.3 . Model training

We used four NVIDIA A100 GPUs for training and ensured that all 

training data was resampled to 24 kHz. To maintain data quality and 

training efficiency, we filtered out speech clips longer than 20 s and 

shorter than 0.6 s from the dataset. In the first stage, we trained the 

model for 30 epochs, followed by 20 epochs in the second stage. The 

training time of each epoch is approximately 5 h. We set the batch size 

to 32 and used the AdamW optimizer with an initial learning rate of 

1e−4. During training, data in each batch were randomly shuffled to 

ensure that each batch contained different speakers’ speech clips.

4.4 . Comparison system

Based on the availability of the comparison models, we have se­

lected several TTS systems capable of controllable speech synthesis or 

accepting two audio inputs as our comparative systems. Among them, 

PromptStyle [22] and PromptTTS [13] can perform controllable speech 

synthesis. They use speaker ID to specify the speaker’s timbre, and then 

use text descriptions to describe the voice style. The two together guide 

the model to synthesize speech. StyleTTS2 [21] supports two speech 

samples as input, which can be fed into the Prosodic Style Encoder and 

the Acoustic Style Encoder for encoding, respectively, and then jointly 

guide speech synthesis. However, StyleTTS2 cannot control the timbre 

and style separately. The speech received by the two Encoders is the 

same speech sample, and it can only restore the style of the original 

voice to a certain extent. Unistyle [17] and ControlSpeech [18] can per­

form Timbre Clone and Style Control simultaneously, but their styles are 

controlled by text descriptions.

In terms of model function, both PromptStyle and PromptTTS only 

support style cloning and cannot clone timbre. Moreover, style control 

can only be achieved through input text descriptions. StyleTTS2 allows 

the input of two speech samples, but the original model can only achieve 

voice cloning when the two speech samples are identical, and it cannot 

fuse the timbre of one speech sample with the style of another. The styles 

of Unistyle and ControlSpeech are controlled by text descriptions. In 

contrast, Control-TTS can simultaneously control both timbre and style 

using two speech samples and can specify any speech content. This en­

ables our model to mitigate information loss due to text descriptions 

during the cloning process, clone the speech style better, and enhance 

control over the speech.

5 . Experiment results

5.1 . The performance of models across various metrics

In this experiment, we conducted a comprehensive comparison 

between Control-TTS and various baseline models, evaluating their 
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Table 3 

The performance of the models across various metrics.

Models NMOS↑ Speaker 

similarity↑

Style similarity↑ WER↓

PromptStyle 3.58 ± 0.09 – 3.27 ± 0.11 8.1

PromotTTS 3.88 ± 0.15 – 3.29 ± 0.12 4.4

StyleTTS2 4.05 ± 0.08 3.72 ± 0.15 3.42 ± 0.09 5.3

UniStyle 3.96 ± 0.12 3.63 ± 0.15 3.43 ± 0.09 5.9

ControlSpeech 4.02 ± 0.11 3.65 ± 0.12 3.40 ± 0.09 4.2

Control-TTS 

(Ours)

4.09 ± 0.13 3.69 ± 0.17 3.66 ± 0.11 3.1

performance on test audio across several key metrics: Naturalness Mean 

Opinion Score (NMOS), Speaker Similarity, Style Similarity, and Word 

Error Rate (WER). To measure speaker similarity, we provided the 

models with two identical reference speech clips. However, due to the 

unavailability of training codes for PromptStyle and PromptTTS, we uti­

lized pre-trained versions of these models3 for testing. These pre-trained 

versions are fixed-speaker models, and thus, we did not assess their 

speaker similarity, denoted by “−” in the results table. For the evalu­

ation of style similarity, we employed a consistent speaker reference 

for voice timbre input while varying the style references. Given that 

PromptStyle and PromptTTS are designed to accept textual descriptions 

of speech styles, we substituted audio inputs with corresponding text de­

scriptions. In contrast, StyleTTS2 and Control-TTS were provided with 

style-embedded audio inputs. This methodological approach ensures a 

fair and systematic comparison across different models, highlighting the 

unique capabilities and limitations of each in handling speaker and style 

variations.

5.1.1 . Overall performance

The experimental results are shown in Table 3. The upward arrow 

indicates that the larger the value is, the better the performance. The 

downward arrow indicates that the smaller the value is, the better the 

performance. The ± sign after the score indicates the variance of the 

model’s scores between different test speech samples. The best result 

for each metric has been highlighted in bold. The experimental results 

indicate that the Control-TTS model demonstrates outstanding com­

petitiveness across all performance metrics, showing advantages when 

compared to similar models.

5.1.2 . Performance on speech quality and clarity

Specifically, in terms of the MOS for speech naturalness, the Control-

TTS model achieved a high score of 4.09, which is significantly better 

than the 3.58 score of the PromptStyle model and the 3.88 score of the 

PromptTTS model. This data fully illustrates that, compared to other 

style-controllable text-to-speech conversion models of the same type, 

Control-TTS performs more prominently in terms of speech naturalness, 

with the synthesized speech being closer to natural speech in terms of 

sound quality, thereby enhancing the auditory experience. Furthermore, 

the Control-TTS model also surpasses the traditional speech synthesis 

model StyleTTS2 with a score of 4.05 in terms of naturalness, further 

confirming the significant progress made by the Control-TTS model in 

sound quality.

In the assessment of speech quality, in addition to subjective evalua­

tions, objective measurement indicators also play a crucial role. Among 

these, the WER is an important quantitative metric used to measure the 

accuracy of speech recognition. The experimental data show that the 

Control-TTS model significantly outperforms other comparative mod­

els with a WER of 3.1, reflecting its exceptional performance in speech 

clarity. This indicates that the Control-TTS model synthesizes audio with 

higher clarity, exhibiting fewer misreadings and pronunciation ambigu­

ities compared to other models. This advantage not only highlights its 

superior performance in speech synthesis tasks but also provides robust 

3 https://github.com/yl4579/PitchExtractor.

support for its practical application in multimodal human-computer 

interaction.

5.1.3 . Performance on style similarity and speaker similarity

In terms of style similarity, Control-TTS outperformed other models. 

Compared with models that rely on text descriptions as style guidance, 

Control-TTS adopts a more direct approach, using style speech as input 

prompts to more accurately extract the style features of the reference 

speech. This approach mitigates the errors and information loss that may 

occur in the text-to-speech modality conversion process.

When users listen to the stylized speech synthesized by Control-TTS, 

they can more clearly perceive the model’s cloning of subtle changes in 

the reference speech, such as pauses, haste, and intonation. In contrast, 

the PromptStyle and PromoteTTS models based on text descriptions can 

only achieve a rough simulation of the speech style and cannot align 

with the original speech at a fine-grained level. Control-TTS directly ex­

tracts information from the style reference speech, preventing the loss of 

stylistic details. In contrast, PromptStyle and PromptTTS rely on textual 

prompts to describe audio styles, which often fail to comprehensively 

capture the nuances present in the reference speech.

In addition, Control-TTS’s performance in the style cloning task also 

surpassed the StyleTTS2 model that uses voice cloning technology. This 

result further confirms the applicability and accuracy of using dual-style 

encoders to model style in style transfer. In the subsequent experimental 

section, we will conduct a more in-depth analysis and verification of the 

style modeling method, aiming to provide sufficient evidence to support 

the effectiveness of our method.

In terms of speaker similarity evaluation, Control-TTS shows com­

parable performance to the specialized voice cloning model StyleTTS2. 

This result is crucial because it shows that Control-TTS does not neg­

atively affect the speaker timbre cloning effect during style modeling. 

In other words, our model not only maintains speaker timbre replica­

tion capabilities comparable to those of models such as StyleTTS2 but 

is also able to inject richer and more diverse style features while retain­

ing the original speaker timbre. This finding reveals the flexibility of the 

Control-TTS model in multitasking, that is, it can achieve fine-tuning and 

control of style while performing voice cloning tasks. This capability not 

only expands the application scope of the model, making it suitable for 

scenarios that require accurate speaker imitation, but also enhances the 

model’s expressiveness in speech synthesis, allowing users to customize 

the style and emotional expression of the voice as required.

5.2 . The comparison of performance using different numbers of style 

encoders

In Control-TTS, we use two encoders to model speech style collabo­

ratively. The prosody encoder and prosody predictor are responsible for 

extracting and predicting the normalized F0 and energy 𝑁  of the style 

reference speech. Meanwhile, the duration encoder and duration pre­

dictor focus on extracting and predicting the duration of each phoneme 

in the style reference speech. This dual-encoder approach reduces the 

encoding load on any single encoder, thereby avoiding inaccuracies in 

encoding and prediction that might arise from handling multiple train­

ing objectives simultaneously. This approach enhances the accuracy of 

variable predictions and improves the effectiveness of style cloning.

In this experiment, we compare Control-TTS with two style encoders, 

as used in practical applications, against a version with only one style en­

coder. In the version with only one style encoder, the only style encoder 

is responsible for encoding normalized 𝐹0, 𝐸, and the duration of each 

phoneme at the same time, instead of utilizing two encoders as in the 

full Control-TTS. Through this experiment, we aim to demonstrate the 

effectiveness of using dual encoders for speech style modeling, thereby 

further validating our approach. The experimental results are shown in 

Table 4.

In our evaluation across three key performance metrics, the 

Control-TTS model with dual style encoders demonstrated notable 
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Table 4 

The comparison of performance using different numbers of style encoders.

Model NMOS↑ Speaker similarity↑ Style similarity↑

Control-TTS (Only one 

style encoder)

3.85 ± 0.13 3.65 ± 0.17 2.89 ± 0.08

Control-TTS (Prosody 

encoder + Duration 

encoder)

4.09 ± 0.13 3.69 ± 0.17 3.66 ± 0.11

superiority, achieving higher naturalness (NMOS) scores and greater 

speaker similarity. Particularly noteworthy is that the dual-encoder 

version of Control-TTS showed a significant advantage in style sim­

ilarity, substantially outperforming the single-encoder version. The 

dual-encoder model was able to more precisely reproduce intonation 

variations and speech rate, resulting in generated speech that closely 

reflected the original style in the style transfer process.

In practical tests, we observed that the single-encoder model could 

only partially replicate the target speech rate during style transfer, while 

its tone presentation tended to be relatively flat, almost devoid of expres­

sive intonation. The dual-encoder model, on the other hand, achieved 

a marked improvement in tone fidelity, closely mirroring the emotional 

expression and intonational variation of the source style. Our analysis 

suggests that this performance difference arises from the single encoder’s 

difficulty in simultaneously encoding prosodic features and the duration 

information of each phoneme. This limitation leads the single-encoder 

model to predict speech duration (Duration) with a degree of accuracy 

but struggle to accurately predict Normalized fundamental frequency 

(Normalized F0), resulting in inadequate tone reproduction.

In contrast, the dual-encoder model exhibits a more effective divi­

sion of tasks, with each encoder specializing in the prediction of either 

Normalized F0 or duration. This focused approach allows the model to 

maximize its strengths, resulting in an optimal balance between tone, 

prosody, and speech rate reproduction. The dual-encoder architecture, 

through task-specific specialization, significantly enhances model per­

formance in style transfer, generating speech that is both more natural 

and lifelike, successfully capturing the emotional and stylistic elements 

of the source speech.

5.3 . T-SNE clustering experiment

In this experiment, we employ the t-SNE clustering method to 

evaluate the capability of Control-TTS in extracting timbre and style, 

aiming to ascertain whether Control-TTS can effectively differentiate 

between various speakers and speaking styles, which is subsequently 

reflected in the synthesized audio. We selected a test dataset from the 

portion of the ESD dataset not utilized for training, which comprises ut­

terances from five distinct speakers, each expressing different emotions, 

including sadness, neutrality, and anger. Each audio sample from the 

test dataset was individually input into the model as a reference speech, 

prompting the model to clone the timbre and style of the reference 

speech, culminating in the output of synthesized audio. Our experiment 

was bifurcated into two segments: the first scrutinized the model’s profi­

ciency in distinguishing between the timbres of different speakers, while 

the second assessed its ability to differentiate between various speaking 

styles.

5.3.1 . Timbre extraction experiment

In the timbre extraction experiment, we first input the test audio into 

the speaker encoder of Control-TTS to extract the speaker embedding 

from the reference speech. Subsequently, we use the audio from the test 

set as a reference to generate corresponding synthetic audio via Control-

TTS. The synthesized audio is then fed back into the speaker encoder 

of Control-TTS to extract its speaker embedding. To analyze these em­

beddings, we employ the t-SNE method to reduce the dimensionality of 

the speaker embeddings and visualize the results in a two-dimensional 

coordinate system. By observing the distribution of data points in the 

two-dimensional space, we can evaluate the effectiveness of Control-

TTS in distinguishing different speakers and assess whether the timbre 

characteristics of the reference speech are preserved during the synthesis 

process. We test two versions of Control-TTS separately: one with both 

a Prosody encoder and a Duration encoder, and the other with only one 

style encoder. The test results of both models are plotted in the Fig. 4.

The experimental results are illustrated in Fig. 4, where distinct col­

ors are utilized to differentiate between speakers. For each speaker, the 

reference speech is denoted by hollow diamonds, whereas the synthe­

sized audio is represented by solid circles. Among the five speakers, 

speakers 1, 2, and 3 are male, while speakers 4 and 5 are female. In 

the t-SNE visualization, the x-axis and y-axis do not carry any specific 

meaning but serve as coordinate representations of the vectors. The 

primary objective is to analyze the relative spatial relationships between 

the vectors.

As observed from Fig. 4, for Control-TTS with two style encoders, 

data points of different colors exhibit a pronounced clustering trend 

in the space, with relatively clear boundaries between clusters and 

Fig. 4. The speaker encoder of Control-TTS generates embeddings for different speakers, where each point represents a segment of audio, and points of different colors 

denote distinct speakers. On the left is the clustering result of Control-TTS with both a Prosody encoder and a Duration encoder, and on the right is the clustering 

result of Control-TTS with only one style encoder.
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Fig. 5. T-SNE experiment on style extraction. The emotion embeddings extracted from the audio synthesized by Control-TTS and StyleTTS2 are represented as 

points, where each point corresponds to a segment of synthesized audio, and points of different colors signify distinct styles. Control-TTS exhibits distinct emotional 

expression across various style reference speeches, whereas StyleTTS2 fails to differentiate the three emotions effectively, resulting in a blend of emotional traits.

no intersections among data points of different colors. This indicates 

that Control-TTS is capable of effectively distinguishing between the 

timbres of different speakers, encoding their audio into independent, 

non-overlapping information, thereby avoiding confusion among the 

timbres of different speakers. Additionally, we observe that the three 

clusters representing male voices are predominantly located on the left 

side of the figure, while the two clusters representing female voices are 

mainly distributed on the right. This phenomenon suggests that Control-

TTS not only differentiates between the timbral characteristics of male 

and female voices, but also that this differentiation is based on specific 

timbral patterns rather than random separation. Consequently, through 

this experiment, we have visually validated the efficacy of Control-TTS 

in timbre extraction and differentiation, further supporting its potential 

in multi-speaker voice processing applications. In the case of having only 

one style encoder, the clustering boundaries between different speak­

ers are not as clear, and the speaker vectors exhibit a certain degree of 

deviation.

Furthermore, it is observed that the speaker embeddings of different 

speakers show negligible variations before and after synthesis, main­

taining their inherent clustering properties. As illustrated in Fig. 4, the 

distributions of circles (synthesized audio) and diamonds (reference 

speech) of the same color remain closely aligned. This demonstrates that 

Control-TTS successfully preserves the timbre of the reference speech 

during the synthesis process, ensuring that the speaker’s voice character­

istics remain consistent. In the case of having only one style encoder, the 

degree of deviation of the synthesized speech compared to the reference 

speech is slightly larger.

5.3.2 . Style extraction experiment

In the style extraction experiment, we utilized an additional tool4

for extracting emotion embeddings to derive emotion embeddings from 

the synthesized audio. Subsequently, we applied the t-SNE method to 

reduce the dimensionality of these emotion embeddings and performed 

clustering, plotting the results on a two-dimensional coordinate system. 

By examining the distribution of data points within this two-dimensional 

space, we aimed to evaluate the ability of Control-TTS to effectively 

distinguish between different speaking styles. In a similar vein, we also 

assessed the capability of the baseline model, StyleTTS2, to differentiate 

among various speaking styles, and we plotted these results alongside 

those of Control-TTS in the same two-dimensional coordinate system 

for comparative analysis.

4 https://github.com/ddlBoJack/emotion2vec.

Fig. 5 illustrates the synthesized results of Control-TTS for different 

emotional reference speeches, where the emotions of sad, neutral, and 

angry are distinctly clustered in three separate directions, demonstrating 

a clear degree of separation. Although a degree of overlap is observed at 

the boundaries between these emotional categories, Control-TTS signifi­

cantly outperforms the baseline model, StyleTTS2, in terms of emotional 

distinction. As shown in the right panel of the figure, StyleTTS2 fails to 

differentiate between the three emotions, resulting in a complete blend­

ing of emotional features during synthesis. In contrast, our proposed 

Control-TTS effectively preserves the distinctions among these emotions, 

highlighting its superior capability in emotion-aware speech synthesis.

5.4 . Experiment on the integration of timbre and style

In the scenario where the model is provided with two distinct au­

dio inputs for the integration of timbre and style, a critical requirement 

is the model’s ability to independently extract the timbre from the 

speaker reference speech and the style from the style reference speech, 

without conflating the timbres or styles of the two reference speeches. 

Consequently, in this experiment, each test case we selected comprises 

two different audio samples. For the speaker similarity metric, we con­

currently examine the synthesized audio’s similarity to both the speaker 

reference and the style reference in terms of speaker characteristics. 

Similarly, for the style similarity metric, we assess the synthesized au­

dio’s similarity to both references in terms of stylistic elements. It is only 

when a discernible gap in similarity to the two references is observed for 

the same metric that we can affirm the model’s correct extraction of the 

timbre from the speaker reference speech and the style from the style 

reference speech, rather than confusion between the two. In this experi­

ment, we have chosen StyleTTS2 as the baseline model for comparison. 

We input two distinct reference speeches into StyleTTS2’s Prosodic Style 

Encoder and Acoustic Style Encoder, respectively.

The experimental results are presented in Table 5, where each met­

ric is accompanied by an arrow indicating the desired direction of the 

value—upward arrows denote that higher values are preferable, while 

Table 5 

The performance of the models on the integration of timbre and style.

Model Speaker Similarity with Style Similarity with

Speaker Style Speaker Style

Reference↑ Reference↓ Reference↓ Reference↑

StyleTTS2 3.25 0.95 2.64 2.93

Control-TTS 4.25 0.58 2.05 3.53
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downward arrows signify that lower values are better. As evidenced by 

the data in the table, Control-TTS exhibits a higher degree of speaker 

similarity to the Speaker Reference and a lower degree to the Style 

Reference, outperforming StyleTTS2 in both speaker similarity metrics. 

Compared to StyleTTS2, Control-TTS more distinctly differentiates the 

timbres of the two references, with the synthesized audio’s timbre being 

closer to that of the Speaker Reference. Similarly, Control-TTS achieves 

a higher style similarity to the Style Reference and a lower similarity 

to the Speaker Reference, excelling over StyleTTS2 in the independent 

extraction of the Style Reference’s style. These experimental outcomes 

demonstrate that the Control-TTS model accurately extracts the timbre 

from the speaker reference speech and the style from the style reference 

speech, without conflating the timbres or styles of the two reference 

speeches.

5.5 . The impact of reference speech length on synthesis performance

To investigate the impact of reference speech length on the perfor­

mance of synthesized speech, we collected four categories of reference 

speech with different durations: less than 2s, 2s-5s, 5s-10s, and 10s-20s. 

We then evaluated the Mean Opinion Score (MOS) for speech quality, 

speaker similarity, and style similarity under these four conditions, with 

the experimental results illustrated in the line chart. In the design of the 

proposed model, zero-padding is applied to all speech segments shorter 

than 0.6s. The experimental results show that when the duration of 

the reference audio is less than 2 s, the quality of the synthesized au­

dio decreases slightly, and when the duration reaches more than 2 s, 

the quality of the synthesized audio tends to stabilize. Notably, longer 

reference speech durations can slightly improve speaker similarity, indi­

cating that extended speech segments can provide more accurate speaker 

representations (Fig. 6).

5.6 . The impact of noisy reference audio on the synthesis performance

To verify the model’s robustness to noisy speech inputs, we designed 

three types of noisy speech input experiments: specifically, experiments 

where the speaker reference speech contains noise, where the style 

reference speech contains noise, and where both reference speeches 

contain noise. The experimental results are presented in Table 6. When 

the speaker reference speech is noisy, the quality of the synthesized 

speech decreases slightly. This is because the speaker encoder interprets 

background noise as one of the speaker’s style characteristics, causing 

the synthesized speech to replicate the noise and thus lower the Mean 

Opinion Score (MOS) for quality, though it barely affects style similarity. 

In contrast, the style encoder shows better robustness to noisy speech; 

this is hypothesized to stem from the theoretical constraints of normal­

ized fundamental frequency and energy, which guide the style encoder 

Fig. 6. The impact of reference speech length on synthesis performance.

Table 6 

The impact of Chinese reference audio on synthesis performance.

Noise addition 

method

NMOS↑ Speaker 

Similarity↑

Style Similarity↑ WER↓

Speaker Refernce 3.74 ± 0.04 3.45 ± 0.02 3.53 ± 0.04 7.8

Style Reference 3.90 ± 0.04 3.56 ± 0.03 3.48 ± 0.06 7.8

Both 3.71 ± 0.04 3.43 ± 0.05 3.42 ± 0.09 8.9

None 4.09 ± 0.13 3.69 ± 0.17 3.66 ± 0.11 3.1

Table 7 

The impact of the amount of training data on synthesis performance.

Model NMOS↑ Speaker Style WER↓

Similarity↑ Similarity↑

Half training data 3.73 ± 0.11 3.52 ± 0.09 3.35 ± 0.12 5.2

Original model 4.09 ± 0.13 3.69 ± 0.17 3.66 ± 0.11 3.1

Table 8 

The impact of Chinese reference audio on synthesis performance.

Speaker+Style NMOS↑ Speaker Style WER↓

Similarity↑ Similarity↑

ch+ch 3.94 ± 0.07 3.47 ± 0.05 3.59 ± 0.13 4.6

ch+en 4.02 ± 0.13 3.56 ± 0.02 3.61 ± 0.06 4.4

en+ch 4.03 ± 0.05 3.63 ± 0.10 3.64 ± 0.06 3.6

en+en 4.09 ± 0.13 3.69 ± 0.17 3.66 ± 0.11 3.1

to ignore part of the noise, resulting in only a slight decrease in both the 

quality and similarity of the synthesized speech.

5.7 . The impact of the amount of training data on synthesis performance

In this experiment, we randomly sampled half of the original data 

to train a new model. By comparing the differences in synthesis per­

formance between the new model and the original model, we explored 

the impact of the amount of training data on the model’s synthesis per­

formance. Our test results are shown in the Table 7. After reducing the 

amount of training data, the model’s performance on various metrics 

decreased slightly compared to the original model. This indicates that 

a larger amount of training data helps to improve the model’s synthesis 

performance.

5.8 . The impact of Chinese reference audio on synthesis performance

To verify the model’s generalization for cross-lingual reference 

speech input tasks, experiments were conducted using Chinese data 

from the ESD dataset, with results summarized in Table 8. Four com­

parative experimental groups were designed: “ch+ch” denotes both 

speaker reference and style reference speech are in Chinese; “ch+en” 

indicates a Chinese speaker reference paired with an English style refer­

ence; “en+ch” represents an English speaker reference combined with 

a Chinese style reference.

It was observed that using Chinese speech as the speaker reference 

leads to a slight decrease in speaker similarity, because the pronun­

ciation rules of different languages cause varying degrees of changes 

in timbre. Meanwhile, whether Chinese or English is used as the emo­

tional reference, the style similarity and NMOS score of the synthesized 

speech only show slight and comparable decreases. This indicates that 

the decoder and style speech encoder in the proposed system have strong 

cross-lingual generalization capabilities.

6 . Conclusion

In the field of multimodal human-computer interaction, the de­

mand for customizable speech among users has become increasingly 

prominent, especially in terms of precise control over timbre and 

style. To address this core requirement, this paper proposes a novel 
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task: Controllable Timbre Cloning and Style Replication with Reference 

Speech Examples, and designs the Control-TTS model as a solution. The 

model directly controls the speaker’s timbre and speaking style of the 

synthesized speech through reference speech, extracting the timbre from 

the speaker’s reference speech and the prosody from the speaking style 

reference speech, respectively, thereby achieving the free combination 

of the two. This effectively enhances the diversity of speech generation, 

providing a more personalized speech output solution for multimodal 

human-computer interaction scenarios.

To improve the accuracy of style replication, this paper innovatively 

adopts a multi-encoder architecture to model speech style from multiple 

dimensions, such as prosody and speaking rate. This multi-perspective 

style feature capture mechanism can more comprehensively capture 

style details in the reference speech, thus enabling faithful restoration 

of the original style during generation.

Experimental results on the VccmDataset fully verify the effec­

tiveness of Control-TTS, as it achieves comparable or state-of-the-art 

performance in key metrics, including naturalness mean opinion score 

(NMOS), word error rate (WER), speaker similarity, and style similar­

ity. Meanwhile, the experiments further confirm that the strategy of 

modeling speech style from different perspectives through multiple en­

coders significantly improves the cloning accuracy of style information, 

providing strong support for achieving higher-quality style replication. 

In summary, through the innovative task definition and model design, 

Control-TTS breaks through the limitations of existing technologies in 

the joint control of timbre and style, provides a new technical path for 

personalized speech in multimodal human-computer interaction, and 

is expected to promote the development of more natural and flexible 

multimodal human-computer interaction systems.
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