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HIGHLIGHTS

« Proposed a new speech task using dual-reference audio for precise timbre/style control & novel combinations.
« Control-TTS model recombines speech traits for new timbre-style mixes, matching SOTA performance.
» Multi-encoder design validated: effectively recombines timbre/style features via ablation studies & t-SNE.

ARTICLE INFO ABSTRACT

Communicated by R. Yang Natural and personalized speech interaction is one of the core requirements for advancing Multimodal Human-
Computer Interaction (HCI), with applications widely seen in smart home devices, voice assistants, and mobile
devices. In recent years, the demand for speech in the HCI field has shifted from basic speech generation to precise

Keywords:

Mlillvt\;mo dal human-computer interaction customization of speaker timbre and speaking style, aiming to achieve more intuitive and immersive multimodal
Timbre cloning and style replication human-computer interaction. However, existing speech personalization technologies have significant limitations:
Controllable speech synthesis zero-shot speech synthesis methods lack the capability for style control, while traditional style-controllable syn-

thesis methods fail to accurately specify speaker timbre, making it difficult to balance personalization between
speaker timbre and speaking style. To address this issue, we define a new task: Controllable Timbre Cloning and
Style Replication with Reference Speech Examples. This task aims to directly control speaker timbre and speak-
ing style through two reference speech examples, allowing timbre cloning and style replication to generate new
timbre-style combinations. To tackle this task, we propose the Control-TTS model. This model utilizes distinct
reference speeches to separately control the timbre and speaking style features of the speaker in the synthe-
sized audio, enabling free combinations of timbre and style. This approach generates synthetic speech with rich
expressivity, providing a more flexible and customizable solution for speech personalization in HCI scenarios.
Our experiments on the VcemDataset demonstrate that Control-TTS achieves comparable or state-of-the-art per-
formance in terms of metrics such as naturalness mean opinion score (NMOS), word error rate (WER), speaker
similarity, and style similarity. Our demo is available at https://progressivetts.github.io/Control TTS/.

1. Introduction rich speech output. It is an essential interface for intuitive multimodal
human-computer interaction. As speech interaction technologies evolve,
the naturalness, expressiveness, and emotional adaptability of generated
speech have improved significantly, enabling compelling performances
in scenarios such as storytelling, virtual assistance, and educational
applications.

Natural and personalized speech interaction serves as the corner-
stone for advancing multimodal human-computer interaction (HCI) [1-
3], with applications that permeate smart home devices, voice assistants,
and mobile devices. This technology bridges the modal gap between
text and audio, converting text-based information into expressive and
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In recent years, HCI demands have shifted beyond basic fluent
speech generation toward the precise customization of speaker tim-
bre and speaking style. Users now seek not only intelligible speech
output but also the ability to tailor vocal characteristics to specific
personas and contextual styles. This shift presents new challenges for
personalized speech technology. The ideal solution would allow in-
dependent control over speaker timbre (capturing the unique vocal
identity of a speaker) and speaking style (reflecting expressive nuances
such as emotion or intonation) while preserving the accuracy of the
content.

Currently, several research approaches have emerged in controllable
speech synthesis, but each has its own limitations. Zero-shot speech
synthesis [4-7] can only transfer the emotion-timbre combination from
reference speech, without the ability to freely specify arbitrary styles or
modify the emotional expression of reference speech during synthesis
[8-11]. Although several studies employ emotion IDs to control emo-
tion types [12], this approach only enables coarse-grained emotional
control and does not capture subtle variations within the same emotion
category. Similarly, style-controllable speech synthesis systems [13-15]
can only modulate speech styles while being unable to specify speaker
timbre. Although speaker IDs have been adopted for timbre control in
several works [16], this approach is constrained by limited speaker di-
versity and fails to generate sufficiently varied timbres. The fundamental
flaw of these two types of work lies in their inability to effectively de-
couple timbre and style, resulting in insufficient control over synthesized
speech.

In addition, some works use text descriptions to control the speak-
ing style of synthesized speech [13,14], or first extract text descriptions
from style reference audio and then use the extracted text descriptions
to guide the synthesis of stylized speech [17,18]. However, describing
speech styles with words is insufficient to fully and comprehensively
represent the style patterns. The lack of accuracy in descriptions can
lead to the failure to accurately convey information about the origi-
nal speech style, resulting in differences between the generated speech
style and that of the original audio. Meanwhile, this process also in-
creases the operational difficulty of the system, imposes a burden on
users, and hinders the promotion and popularization of this technol-
ogy. These limitations stem from a core oversight: treating style as a
text-encodable attribute rather than a distinct perceptual feature that
requires independent modeling.

To address these inherent limitations, our proposed Control-TTS di-
rectly controls the speaker’s timbre and speaking style of the synthesized
speech through reference audio, and can specify arbitrary speaking
content, as shown in Fig. 1. Unlike single-reference zero-shot TTS,
our dedicated speaker encoder separates speaker-specific features from
the reference speech, while the style encoder independently captures
prosodic and emotional nuances, thereby eliminating the binding be-
tween timbre and style. Compared with text description-based methods,
our design does not require explicit text descriptions. By directly model-
ing style as perceptual embeddings, it preserves fine-grained style details
and reduces the burden on users. For methods based on discrete emo-
tion IDs, our continuous style embedding space naturally supports subtle
style variations because it learns from perceptual similarity rather than
relying on predefined categories.

Our contributions are as follows:

« We identify the demand for personalized customization of speaker
timbre and style in the field of multimodal human-computer in-
teraction, establishing the task of Controllable Timbre Cloning and
Style Replication with Reference Speech Examples. This task lever-
ages two reference speech samples to control both speaker timbre
and speaking style more precisely, enabling the generation of novel
timbre-style combinations.

We propose Control-TTS, a novel model that generates new combi-
nations of speaker timbre and speaking style by effectively recom-
bining characteristics from speech examples. Experimental results
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Fig. 1. Schematic diagram of Control-TTS. Control-TTS extracts the timbre of
speaker reference speech and the style of style reference speech and synthesizes
the final audio. Traditional TTS models can only adopt the style and emotion of
the original reference speech.

demonstrate that Control-TTS exhibits comparable or state-of-the-art
performance on this task.

We conduct comparative experiments on the number of encoders, t-
SNE clustering, and other experiments. We also explore the impact
of reference audio length, background noise, training data volume,
and cross-lingual reference audio on the quality of synthesized au-
dio. These experiments demonstrate that Control-TTS uses multiple
encoders to model speech from multiple perspectives, enabling more
effective extraction of timbre and style from audio during speech
synthesis.

2. Related work

We propose the task of Controllable Timbre Cloning and Style
Replication with Reference Speech Examples. The related work of this
new task includes zero-shot speech synthesis, style-controllable speech
synthesis, and previous controllable speech synthesis tasks under the
guidance of text descriptions. Below, we introduce previous works in
these three parts and explain the differences between our work and these
existing works.

2.1. Zero-shot TTS

Zero-shot speech synthesis refers to synthesizing the voice of an un-
seen speaker with only the guidance of a few seconds of voice prompts.
This technology is also called voice cloning. With the introduction of
different model architectures, the effectiveness of zero-shot speech syn-
thesis is also continuously improving. VALL-E [4] uses a discrete codec
representation to combine autoregressive and non-autoregressive mod-
els in a cascade manner, retaining the powerful contextual functionality
of the language model. NaturalSpeech2 [5] replaces discrete neural
codec tags with continuous vectors, introducing in-context learning into
the diffusion model and further improving the quality of synthesized
speech. Mega-TTS [6] uses traditional Mel-spectrograms to decouple
timbre and prosody and employs autoregressive methods to further
model prosody. VoiceBox [7] is a non-autoregressive stream matching
model that is trained to fill in speech given speech context and text. It
is worth noting that although zero-shot speech synthesis has made great
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Table 1
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Functional comparison of Control-TTS and other TTS systems.

Models Timbre Clone  Style Control Integration of Timbre and Style

VALL-E[4] X X
Mega-TTS[6] X X
VoiceBox|[7] X X
StyleTTS2[21] X X
PromptTTS[13] X X
PromptStyle[22] X X
InstructTTS[14] X X
Textrolspeech[15] X X

Unistyle[17] W (style controlled by text description)

ControlSpeech[18] W (style controlled by text description)

Control-TTS (Ours)

(style controlled by audio reference)

progress, this technology can only control the timbre of the synthesized
speech, but not the style of the speech. In contrast, our Control-TTS
achieves control over both timbre and style at the same time, thereby
addressing this limitation.

2.2. Style-controllable speech synthesis

Several studies control the style of synthesized speech through text
prompts. The text description usually includes gender, pitch, speaking
speed, emotion, etc. In this type of study, the model understands the
text description and converts it into the style of synthesized speech,
which has certain cross-modal capabilities. PromptTTS [13] uses man-
ually annotated text prompts to describe the five attributes of speech
(gender, pitch, speaking speed, energy, and emotion) and trains the
model on two synthetic speaker datasets and LibriTTS [19]. InstructTTS
[14] uses a three-stage training method to capture semantic information
from natural language style prompts and uses the semantic informa-
tion as conditional input for the TTS system. Textrolspeech [15] regards
style-controllable TTS as a language modeling task and uses a codec ar-
chitecture based on VALL-E [4]. PromptTTS2 [20] proposes using LLM
to automatically create text descriptions of speech style and adopts a
diffusion model to capture the one-to-many relationship between speech
and text descriptions. It is worth noting that existing style-controllable
speech synthesis systems are either fixed-speaker speech synthesis sys-
tems or can only specify a limited number of timbres through SpeakerID,
lacking the capability of timbre cloning. Our Control-TTS can specify the
timbre of any speaker through reference speech.

2.3. Speaker-specific and style-controllable TTS

To address the limitations of zero-shot TTS and style-controllable
speech synthesis, several studies suggest using textual descriptions to
control the speaking style or the speaker’s timbre. Unistyle [17] uses
two reference speech samples to control the language style and speaker
timbre, respectively. The speaker’s timbre is directly controlled by the
timbre reference speech, and the style reference speech must be con-
verted into a text description before being re-entered into the model.
After that, the style of the synthesis speech is controlled, which is equiv-
alent to a cascade synthesis process. ControlSpeech [18] directly controls
the synthesized timbre through timbre reference speech, but this model
also controls the style of speech through text description.

We argue that describing speech style in words is not enough to fully
and comprehensively reflect the style, during which the speech style
may lose accuracy due to inaccurate or incomplete descriptions, which
in turn causes the synthesized speech style to deviate from the style of
the original speech. At the same time, for users, a relatively complete
and comprehensive description of the speech style is required to synthe-
size an ideal speech. This requirement raises the bar for deploying the
system and is not conducive to the widespread dissemination of related
technologies. Our Control-TTS proposed in this paper directly controls

the speaking style through reference speech, avoiding this error while
improving the convenience of using the model.

As shown in Table 1, we present a functional comparison be-
tween Control-TTS and other speech synthesis systems. Compared to
other models, Control-TTS is capable of simultaneously achieving voice
cloning and style control. Moreover, during the style control process,
it utilizes audio references, which can more accurately describe style
details compared to text descriptions.

3. Proposed methods

In this section, we first introduce the overall structure and inference
process of Control-TTS, demonstrating how the model achieves control-
lable speech synthesis in terms of speaker style and timbre. Then, we
describe the role of each module in the inference process, along with its
inputs and outputs. Finally, we discuss the training process of the model
and the rationale behind this training approach.

3.1. Overview

Fig. 2 shows the overall architecture of Control-TTS. The model’s
inputs include:

(1) A speaker reference speech Rk used to control the timbre of the
synthesized speech.

(2) A style reference speech Ry, used to control the speaking style of
the synthesized speech.

(3) A phoneme sequence P =[P, P,, ..., P,] derived from text, where
n is the length of the phoneme, used to control the content of the
synthesized speech.

The model’s output is the synthesized speech generated under the
control of these three inputs.

Our processing pipeline for raw speech samples comprises six key
stages. First, audio samples are read exclusively in mono-channel for-
mat. Second, all speech signals are uniformly resampled to 24 kHz.
Third, audio length standardization is performed: segments shorter than
0.6 s are zero-padded to meet the minimum duration threshold, while
all recordings are prefixed and suffixed with 5000 zero-valued sam-
ples (silence segments). Fourth, Mel-spectrograms are extracted using
80 Mel-frequency bands. Fifth, spectral normalization is applied through
logarithmic compression and standardization of the Mel-spectrograms.
Finally, during training, reference audio segments undergo random crop-
ping with a maximum Mel-spectrogram frame length constrained to 192
frames.

The model’s Speaker Encoder encodes Ry, to extract the timbre
embedding .S,. Subsequently, S, will be fed into the Decoder to guide
the synthesis of the audio timbre.

The model’s Prosody Encoder and Duration Encoder process Ry, to
generate embeddings for the prosody and duration predictors within
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Fig. 2. The overall structure of Control-TTS. In the first stage of training, only the modules in the dashed box with a blue background participate, and in the second
stage is the joint training of all modules occurs. The dotted arrows only participate in the first stage of training and do not participate in the second stage.

the style predictor. The style text encoder additionally provides tex-
tual encodings to the style predictor, which estimates phoneme du-
rations, normalized fundamental frequency (F0), and energy (E) tra-
jectories. These acoustic features exhibit strong content dependence
in speech synthesis. The predicted durations, FO, and energy param-
eters are subsequently fed to the Decoder for style-controlled speech
generation.

The Text Adaptor consists of two components: the Speaker Text
Encoder and the Text Aligner. The Speaker Text Encoder converts
phoneme sequences into phoneme embeddings. During inference,
phoneme durations are predicted by the Duration Predictor, while train-
ing employs the Text Aligner to extract ground-truth durations from
reference speech. These durations form an alignment matrix A™/, where
n denotes the phoneme sequence length and / represents the Mel-
spectrogram frame count. The phoneme embeddings are then aligned
through matrix multiplication with A before decoder integration, en-
abling accurate audio content synthesis.

This describes the Control-TTS framework for controllable speech
synthesis. The subsequent sections detail the individual sub-modules.

The above is the overall process of Control-TTS for controllable
speech synthesis. In the following sections, we will introduce the details
of each sub-module.

3.2. Control-TTS module introduction

3.2.1. Encoder

Control-TTS contains three types of encoders, which respectively en-
code Rgy, P, and Ry, The following sections introduce each of these
components in detail.

Style Speech Encoder

The Style Speech Encoder employs parallel prosody and duration
encoders to extract prosodic (Sp) and duration (Sy) representations
from reference Mel-spectrograms My, capturing normalized FO, en-
ergy (E), and phoneme duration information. The architecture imple-
ments a hierarchical residual network with four bottleneck residual
blocks featuring spectral-normalized convolutional layers and instance
normalization. Global adaptive pooling generates 512-channel features,

projected to 128-dimensional embeddings S, and S,. The specific
structure of this module is shown in the Fig. 3(a).

Speaker Encoder

The Speaker Encoder’s function is to extract the speaker’s timbre
information. Given the Mel-spectrogram of Ry, it provides a speaker
embedding S,. Its structure is the same as the style encoder, and it also
includes four layers of residual networks with a bottleneck structure.
The specific structure of this module is shown in the Fig. 3(a).

Style Text Encoder

The Style Text Encoder consists of a pre-trained phoneme-level Bert
[23] and a linear layer, with which we can obtain a fine-grained text
embedding of the phoneme context.

3.2.2. Text adaptor

Comprising Speaker Text Encoder and Text Aligner, this module
processes phoneme sequences through ConvlD layers, layer normal-
ization, and LSTM to generate phoneme embeddings P. The Text
Aligner we used is AuxiliaryASR.! This is a phoneme-level ASR model
trained on English speech, which can provide phoneme-level align-
ment A™/ for reference speech and phoneme sequences. The model
integrates convolutional neural networks with two joint decoders,
namely Connectionist Temporal Classification (CTC) and attention-
based sequence-to-sequence (S2S) models. This hybrid architecture
leverages the training stability of the CTC and the high accuracy of
the S2S models, achieving automatic speech recognition at the phoneme
level. Temporal-aligned embeddings are computed as:

P=PxA 6]
3.2.3. Style predictor
The Style Predictor generates normalized FO FO0,,,4, energy E,,. .,

and phoneme durations by fusing text embeddings with prosodic S, and
duration S style representations. Normalized FO preserves rhythmic
patterns while reducing speaker-specific characteristics to facilitate
style-speaker disentanglement. Energy represents aperiodic compo-
nents, and phoneme durations determine speech rate - collectively

1 https://github.com/yl4579/AuxiliaryASR.
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Fig. 3. The internal structures of audio encoder, predictor, and decoder.

defining speech style. The specific structure of this module is shown
in the Fig. 3(b).

The duration predictor integrates text embeddings with .S via LSTM
with adaptive layer normalization, then generates duration predictions
d,red through a bidirectional LSTM and linear layer. Ground-truth
durations d,t from the Text Aligner provide supervision:
Ly = Ly1055(d g, dgy) )

The prosody predictor estimates FO0,,,, and E,,., using a shared ar-
chitecture. Text embeddings and S, are fused through an LSTM with
adaptive layer normalization, then aligned with phoneme sequences via
matrix multiplication with the alignment matrix A to produce temporal
features M,

Subsequent  processing employs two Adaptive Instance
Normalization (AdaIN) layers for deep style integration, with Conv1lD
layers and residual connections enhancing nonlinearity. The final
predictions are supervised using z-score normalized ground-truth:

LnarmFO = MSE(FOgt’ FOpred) (3)
Lp = MSE(Eg. E,peq) 4
3.2.4. Decoder

The decoder synthesizes the final audio output wavy,, from three

input components: prosodic features comprising normalized FO and en-
ergy content features represented by the aligned phoneme embedding
P’, and speaker characteristics encoded in the timbre embedding S, as
follows:

= decoder(P', FO 5)

wavgy,

pred> Npred’ SI)

The decoder’s structure is similar to that of HiIFiGAN [24]. Unlike the
process of recovering waveforms from Mel-spectrogram features, this
work focuses on upsampling from normalized F0 and other features. To
achieve this, we concatenate normalized F0, energy E, and phoneme-
aligned features along the speech frame duration dimension. After that,
we incorporate AdalN layers in the residual network to fuse speaker-
specific features. The fused features are then fed into the vocoder for
audio synthesis. We utilize the multi-resolution discriminator (MRD) and

the multi-period discriminator (MPD), the same as [25]. The specific
structure of this module is shown in the Fig. 3(c).

In our experiments, we found that the generator tends to average
high-frequency harmonics, causing a reduction in the speaker’s timbre.
To address this issue, we implemented multiple sub-discriminators with
FFT sizes of 2048 and varying window lengths, enhancing the decoder’s
sensitivity to high-frequency information. We trained the decoder using
a combination of adversarial loss function L,;,, feature matching loss
L,,, and Mel-spectrogram reconstruction loss L., where D represents
the two discriminators MPD and MRD. D; and N, denote the feature
values and the number of features at the i-th layer of the discriminator,
respectively. M wav,,,, Tepresents the computation of the Mel-spectrogram
for the synthesized speech.

Lagu(D.G) = E (D (wavyy,) = 1)*)| + E [(D (wav,,,))) |

+E [(D (R»Z)] ©)
T
1 i i
‘CFM(G’ D)= ]E(wauxyn,R) |:Z F ”D (R) -D (wavsyn)”l:| (7)
i=1 i
L,..; = Liloss (Mxpk’ Mwausyn) (8)

3.3. Training process

Our training process is divided into two stages. In the first stage,
we only train the speaker encoder, the speaker text encoder in the text
adaptor, and the decoder. The training process is shown in Fig. 2, where
the modules within the dashed box represent the first phase of training.

The training task at this stage is speech restoration. The speaker en-
coder extracts the timbre embedding from the speaker reference. The
input of the text adaptor is the text corresponding to the speech, and the
text is encoded to align with the timbre. In addition, in the first stage, we
do not train encoders related to style prediction, but only train encoders
to extract timbre. Therefore, in this stage, we extract the normalized F0
and Energy E of the speaker reference in advance and directly input the
ground truth into the decoder during the synthesis process. Finally, the
decoder synthesizes the restored speech, and the synthesized speech is
used to calculate the loss with the speaker reference, thus completing
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the first stage of training. We use a pre-trained model? to extract the
normalized FO and Energy E of the speech.

The reason we designed the first stage in this way is that we want to
use general speech synthesis tasks to first train an encoder-decoder struc-
ture with basic speech synthesis capabilities. This structure will serve as
the basis for the second stage of training. By adding encoders that extract
duration information and prosody information, respectively, we will
eventually obtain a model that can perform controllable speech synthe-
sis tasks. This staged training paradigm enables the gradual increment of
model parameters, thereby circumventing redundant computations and
enhancing training efficiency. If a single-stage training strategy is em-
ployed, the model achieves performance equivalent to that of two-stage
training. However, the number of training epochs needed is slightly
higher. Specifically, our model undergoes 50 epochs of training in the
two-stage paradigm, whereas 60 to 70 epochs are required for the single-
stage approach to reach convergence. A similar training process has also
been adopted in other related works [21,26].

In the second stage, we jointly train the entire model by adding a
prosody encoder, a duration encoder, a style text encoder, and a style
predictor, based on the first stage, as shown in Fig. 2. In this stage, nor-
malized FO, E, and duration are predicted by the style predictor, and we
use the ground truth extracted in the first stage as the supervision signal
for these variables. In the training stage, the style reference and speaker
reference are the same speech, so we can still use the synthesized speech
and speaker reference to calculate the loss as the final loss:

Lfinal = Ldur + Lmel + Ludu + LFM + LnormFO + LE (9)

4. Experimental setup and evaluation metrics
4.1. Datasets

As shown in Table 2, the datasets we use to train Control-TTS in-
clude: LibriTTS [19], ESD [27]. LibriTTS is a multi-speaker English
corpus for TTS. We use the two high-quality subsets, train-clean-360
and train-clean-100, as our training set. This part of the data contains
115 h of speech from 1151 speakers. We use dev-clean and test-clean as
the validation set and test set, respectively. The ESD (Emotional Speech
Database) is a bilingual dataset containing both Chinese and English
speech. It includes 350 parallel utterances spoken by 10 native English
speakers and 10 native Chinese speakers, covering five emotional cate-
gories: neutral, happy, angry, sad, and surprise. The dataset consists of
over 29 h of speech recorded in a controlled acoustic environment, de-
signed to support multi-speaker and cross-lingual emotional TTS studies.
We use the English part and divide it into the training set, the validation
set, and the test set in the ratio of 8:1:1.

During the testing of Control-TTS and other comparative models, we
utilized a self-constructed dataset to ensure that the audio within the
test dataset had not been encountered by any of the models during their
training phases. This part of the data is selected from the VccmDataset
proposed by TextrolSpeech [15], with 1000 utterances chosen for WER
evaluation and 20 utterances serving as style references and speaker
references for subjective evaluation. The selection criteria were clear
speech and good audio quality. Additionally, our test cases included
some with distinct tones, aiming to assess the models’ style cloning
capabilities.

4.2. Evaluation metrics

For subjective evaluation, we employed the Naturalness Mean
Opinion Score (NMOS) to assess speech quality and naturalness. We
employed the Speaker Similarity Mean Opinion Score to assess the tim-
bre similarity with the Speaker Reference and the Style Similarity Mean
Opinion Score to evaluate the style similarity with the Style Reference.

2 https://github.com/yl4579/PitchExtractor
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Table 2

Corpus used to train the model.
Corpus Speech number Speaker number Hours
LibriTTS (Train-clean-460) 149,736 1151 115
ESD (English) 17,500 10 15

Both Speaker Similarity and Style Similarity adopt the same human
subjective scoring method as NMOS. These three metrics belong to the
subjective evaluation category. We selected 15 annotators independent
of the model training and development process to conduct blind scoring
on speech synthesized by Control-TTS and baseline models. They rated
each metric on a scale of 1 to 5, and we calculated the average scores
for each model to determine the final scores.

For objective evaluation, we employed the Word Error Rate (WER)
to evaluate the clarity of the synthesized speech, reflecting the quality of
the synthesized speech. We employed the Whisper [28] speech recogni-
tion model to transcribe the test speech, comparing the recognized text
with the ground truth text to calculate the WER.

4.3. Model training

We used four NVIDIA A100 GPUs for training and ensured that all
training data was resampled to 24 kHz. To maintain data quality and
training efficiency, we filtered out speech clips longer than 20 s and
shorter than 0.6 s from the dataset. In the first stage, we trained the
model for 30 epochs, followed by 20 epochs in the second stage. The
training time of each epoch is approximately 5 h. We set the batch size
to 32 and used the AdamW optimizer with an initial learning rate of
le—4. During training, data in each batch were randomly shuffled to
ensure that each batch contained different speakers’ speech clips.

4.4. Comparison system

Based on the availability of the comparison models, we have se-
lected several TTS systems capable of controllable speech synthesis or
accepting two audio inputs as our comparative systems. Among them,
PromptStyle [22] and PromptTTS [13] can perform controllable speech
synthesis. They use speaker ID to specify the speaker’s timbre, and then
use text descriptions to describe the voice style. The two together guide
the model to synthesize speech. StyleTTS2 [21] supports two speech
samples as input, which can be fed into the Prosodic Style Encoder and
the Acoustic Style Encoder for encoding, respectively, and then jointly
guide speech synthesis. However, StyleTTS2 cannot control the timbre
and style separately. The speech received by the two Encoders is the
same speech sample, and it can only restore the style of the original
voice to a certain extent. Unistyle [17] and ControlSpeech [18] can per-
form Timbre Clone and Style Control simultaneously, but their styles are
controlled by text descriptions.

In terms of model function, both PromptStyle and PromptTTS only
support style cloning and cannot clone timbre. Moreover, style control
can only be achieved through input text descriptions. StyleTTS2 allows
the input of two speech samples, but the original model can only achieve
voice cloning when the two speech samples are identical, and it cannot
fuse the timbre of one speech sample with the style of another. The styles
of Unistyle and ControlSpeech are controlled by text descriptions. In
contrast, Control-TTS can simultaneously control both timbre and style
using two speech samples and can specify any speech content. This en-
ables our model to mitigate information loss due to text descriptions
during the cloning process, clone the speech style better, and enhance
control over the speech.

5. Experiment results
5.1. The performance of models across various metrics

In this experiment, we conducted a comprehensive comparison
between Control-TTS and various baseline models, evaluating their
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Table 3
The performance of the models across various metrics.

Models NMOSt Speaker Style similarity? WER|
similarity?

PromptStyle 3.58 £ 0.09 - 3.27 £0.11 8.1
PromotTTS 3.88 +0.15 - 3.29 £ 0.12 4.4
StyleTTS2 4.05 + 0.08 3.72 £ 0.15 3.42 + 0.09 5.3
UniStyle 3.96 + 0.12 3.63 £ 0.15 3.43 £ 0.09 5.9
ControlSpeech 4.02 £ 0.11 3.65 + 0.12 3.40 £ 0.09 4.2
Control-TTS 4.09 + 0.13 3.69 +0.17 3.66 + 0.11 3.1
(Ours)

performance on test audio across several key metrics: Naturalness Mean
Opinion Score (NMOS), Speaker Similarity, Style Similarity, and Word
Error Rate (WER). To measure speaker similarity, we provided the
models with two identical reference speech clips. However, due to the
unavailability of training codes for PromptStyle and PromptTTS, we uti-
lized pre-trained versions of these models® for testing. These pre-trained
versions are fixed-speaker models, and thus, we did not assess their
speaker similarity, denoted by “-~” in the results table. For the evalu-
ation of style similarity, we employed a consistent speaker reference
for voice timbre input while varying the style references. Given that
PromptStyle and PromptTTS are designed to accept textual descriptions
of speech styles, we substituted audio inputs with corresponding text de-
scriptions. In contrast, StyleTTS2 and Control-TTS were provided with
style-embedded audio inputs. This methodological approach ensures a
fair and systematic comparison across different models, highlighting the
unique capabilities and limitations of each in handling speaker and style
variations.

5.1.1. Overall performance

The experimental results are shown in Table 3. The upward arrow
indicates that the larger the value is, the better the performance. The
downward arrow indicates that the smaller the value is, the better the
performance. The + sign after the score indicates the variance of the
model’s scores between different test speech samples. The best result
for each metric has been highlighted in bold. The experimental results
indicate that the Control-TTS model demonstrates outstanding com-
petitiveness across all performance metrics, showing advantages when
compared to similar models.

5.1.2. Performance on speech quality and clarity

Specifically, in terms of the MOS for speech naturalness, the Control-
TTS model achieved a high score of 4.09, which is significantly better
than the 3.58 score of the PromptStyle model and the 3.88 score of the
PromptTTS model. This data fully illustrates that, compared to other
style-controllable text-to-speech conversion models of the same type,
Control-TTS performs more prominently in terms of speech naturalness,
with the synthesized speech being closer to natural speech in terms of
sound quality, thereby enhancing the auditory experience. Furthermore,
the Control-TTS model also surpasses the traditional speech synthesis
model StyleTTS2 with a score of 4.05 in terms of naturalness, further
confirming the significant progress made by the Control-TTS model in
sound quality.

In the assessment of speech quality, in addition to subjective evalua-
tions, objective measurement indicators also play a crucial role. Among
these, the WER is an important quantitative metric used to measure the
accuracy of speech recognition. The experimental data show that the
Control-TTS model significantly outperforms other comparative mod-
els with a WER of 3.1, reflecting its exceptional performance in speech
clarity. This indicates that the Control-TTS model synthesizes audio with
higher clarity, exhibiting fewer misreadings and pronunciation ambigu-
ities compared to other models. This advantage not only highlights its
superior performance in speech synthesis tasks but also provides robust

3 https://github.com/yl4579/PitchExtractor.
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support for its practical application in multimodal human-computer
interaction.

5.1.3. Performance on style similarity and speaker similarity

In terms of style similarity, Control-TTS outperformed other models.
Compared with models that rely on text descriptions as style guidance,
Control-TTS adopts a more direct approach, using style speech as input
prompts to more accurately extract the style features of the reference
speech. This approach mitigates the errors and information loss that may
occur in the text-to-speech modality conversion process.

When users listen to the stylized speech synthesized by Control-TTS,
they can more clearly perceive the model’s cloning of subtle changes in
the reference speech, such as pauses, haste, and intonation. In contrast,
the PromptStyle and PromoteTTS models based on text descriptions can
only achieve a rough simulation of the speech style and cannot align
with the original speech at a fine-grained level. Control-TTS directly ex-
tracts information from the style reference speech, preventing the loss of
stylistic details. In contrast, PromptStyle and PromptTTS rely on textual
prompts to describe audio styles, which often fail to comprehensively
capture the nuances present in the reference speech.

In addition, Control-TTS’s performance in the style cloning task also
surpassed the StyleTTS2 model that uses voice cloning technology. This
result further confirms the applicability and accuracy of using dual-style
encoders to model style in style transfer. In the subsequent experimental
section, we will conduct a more in-depth analysis and verification of the
style modeling method, aiming to provide sufficient evidence to support
the effectiveness of our method.

In terms of speaker similarity evaluation, Control-TTS shows com-
parable performance to the specialized voice cloning model StyleTTS2.
This result is crucial because it shows that Control-TTS does not neg-
atively affect the speaker timbre cloning effect during style modeling.
In other words, our model not only maintains speaker timbre replica-
tion capabilities comparable to those of models such as StyleTTS2 but
is also able to inject richer and more diverse style features while retain-
ing the original speaker timbre. This finding reveals the flexibility of the
Control-TTS model in multitasking, that is, it can achieve fine-tuning and
control of style while performing voice cloning tasks. This capability not
only expands the application scope of the model, making it suitable for
scenarios that require accurate speaker imitation, but also enhances the
model’s expressiveness in speech synthesis, allowing users to customize
the style and emotional expression of the voice as required.

5.2. The comparison of performance using different numbers of style
encoders

In Control-TTS, we use two encoders to model speech style collabo-
ratively. The prosody encoder and prosody predictor are responsible for
extracting and predicting the normalized FO and energy N of the style
reference speech. Meanwhile, the duration encoder and duration pre-
dictor focus on extracting and predicting the duration of each phoneme
in the style reference speech. This dual-encoder approach reduces the
encoding load on any single encoder, thereby avoiding inaccuracies in
encoding and prediction that might arise from handling multiple train-
ing objectives simultaneously. This approach enhances the accuracy of
variable predictions and improves the effectiveness of style cloning.

In this experiment, we compare Control-TTS with two style encoders,
as used in practical applications, against a version with only one style en-
coder. In the version with only one style encoder, the only style encoder
is responsible for encoding normalized FO, E, and the duration of each
phoneme at the same time, instead of utilizing two encoders as in the
full Control-TTS. Through this experiment, we aim to demonstrate the
effectiveness of using dual encoders for speech style modeling, thereby
further validating our approach. The experimental results are shown in
Table 4.

In our evaluation across three key performance metrics, the
Control-TTS model with dual style encoders demonstrated notable
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Table 4
The comparison of performance using different numbers of style encoders.

Model NMOS? Speaker similarityt Style similarityt
Control-TTS (Only one 3.85+0.13 3.65 +0.17 2.89 + 0.08
style encoder)

Control-TTS (Prosody 4.09 + 0.13 3.69 + 0.17 3.66 + 0.11

encoder + Duration
encoder)

superiority, achieving higher naturalness (NMOS) scores and greater
speaker similarity. Particularly noteworthy is that the dual-encoder
version of Control-TTS showed a significant advantage in style sim-
ilarity, substantially outperforming the single-encoder version. The
dual-encoder model was able to more precisely reproduce intonation
variations and speech rate, resulting in generated speech that closely
reflected the original style in the style transfer process.

In practical tests, we observed that the single-encoder model could
only partially replicate the target speech rate during style transfer, while
its tone presentation tended to be relatively flat, almost devoid of expres-
sive intonation. The dual-encoder model, on the other hand, achieved
a marked improvement in tone fidelity, closely mirroring the emotional
expression and intonational variation of the source style. Our analysis
suggests that this performance difference arises from the single encoder’s
difficulty in simultaneously encoding prosodic features and the duration
information of each phoneme. This limitation leads the single-encoder
model to predict speech duration (Duration) with a degree of accuracy
but struggle to accurately predict Normalized fundamental frequency
(Normalized F0), resulting in inadequate tone reproduction.

In contrast, the dual-encoder model exhibits a more effective divi-
sion of tasks, with each encoder specializing in the prediction of either
Normalized FO or duration. This focused approach allows the model to
maximize its strengths, resulting in an optimal balance between tone,
prosody, and speech rate reproduction. The dual-encoder architecture,
through task-specific specialization, significantly enhances model per-
formance in style transfer, generating speech that is both more natural
and lifelike, successfully capturing the emotional and stylistic elements
of the source speech.

5.3. T-SNE clustering experiment

In this experiment, we employ the t-SNE clustering method to
evaluate the capability of Control-TTS in extracting timbre and style,
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aiming to ascertain whether Control-TTS can effectively differentiate
between various speakers and speaking styles, which is subsequently
reflected in the synthesized audio. We selected a test dataset from the
portion of the ESD dataset not utilized for training, which comprises ut-
terances from five distinct speakers, each expressing different emotions,
including sadness, neutrality, and anger. Each audio sample from the
test dataset was individually input into the model as a reference speech,
prompting the model to clone the timbre and style of the reference
speech, culminating in the output of synthesized audio. Our experiment
was bifurcated into two segments: the first scrutinized the model’s profi-
ciency in distinguishing between the timbres of different speakers, while
the second assessed its ability to differentiate between various speaking
styles.

5.3.1. Timbre extraction experiment

In the timbre extraction experiment, we first input the test audio into
the speaker encoder of Control-TTS to extract the speaker embedding
from the reference speech. Subsequently, we use the audio from the test
set as a reference to generate corresponding synthetic audio via Control-
TTS. The synthesized audio is then fed back into the speaker encoder
of Control-TTS to extract its speaker embedding. To analyze these em-
beddings, we employ the t-SNE method to reduce the dimensionality of
the speaker embeddings and visualize the results in a two-dimensional
coordinate system. By observing the distribution of data points in the
two-dimensional space, we can evaluate the effectiveness of Control-
TTS in distinguishing different speakers and assess whether the timbre
characteristics of the reference speech are preserved during the synthesis
process. We test two versions of Control-TTS separately: one with both
a Prosody encoder and a Duration encoder, and the other with only one
style encoder. The test results of both models are plotted in the Fig. 4.

The experimental results are illustrated in Fig. 4, where distinct col-
ors are utilized to differentiate between speakers. For each speaker, the
reference speech is denoted by hollow diamonds, whereas the synthe-
sized audio is represented by solid circles. Among the five speakers,
speakers 1, 2, and 3 are male, while speakers 4 and 5 are female. In
the t-SNE visualization, the x-axis and y-axis do not carry any specific
meaning but serve as coordinate representations of the vectors. The
primary objective is to analyze the relative spatial relationships between
the vectors.

As observed from Fig. 4, for Control-TTS with two style encoders,
data points of different colors exhibit a pronounced clustering trend
in the space, with relatively clear boundaries between clusters and
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Fig. 4. The speaker encoder of Control-TTS generates embeddings for different speakers, where each point represents a segment of audio, and points of different colors
denote distinct speakers. On the left is the clustering result of Control-TTS with both a Prosody encoder and a Duration encoder, and on the right is the clustering

result of Control-TTS with only one style encoder.
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Fig. 5. T-SNE experiment on style extraction. The emotion embeddings extracted from the audio synthesized by Control-TTS and StyleTTS2 are represented as
points, where each point corresponds to a segment of synthesized audio, and points of different colors signify distinct styles. Control-TTS exhibits distinct emotional
expression across various style reference speeches, whereas StyleTTS2 fails to differentiate the three emotions effectively, resulting in a blend of emotional traits.

no intersections among data points of different colors. This indicates
that Control-TTS is capable of effectively distinguishing between the
timbres of different speakers, encoding their audio into independent,
non-overlapping information, thereby avoiding confusion among the
timbres of different speakers. Additionally, we observe that the three
clusters representing male voices are predominantly located on the left
side of the figure, while the two clusters representing female voices are
mainly distributed on the right. This phenomenon suggests that Control-
TTS not only differentiates between the timbral characteristics of male
and female voices, but also that this differentiation is based on specific
timbral patterns rather than random separation. Consequently, through
this experiment, we have visually validated the efficacy of Control-TTS
in timbre extraction and differentiation, further supporting its potential
in multi-speaker voice processing applications. In the case of having only
one style encoder, the clustering boundaries between different speak-
ers are not as clear, and the speaker vectors exhibit a certain degree of
deviation.

Furthermore, it is observed that the speaker embeddings of different
speakers show negligible variations before and after synthesis, main-
taining their inherent clustering properties. As illustrated in Fig. 4, the
distributions of circles (synthesized audio) and diamonds (reference
speech) of the same color remain closely aligned. This demonstrates that
Control-TTS successfully preserves the timbre of the reference speech
during the synthesis process, ensuring that the speaker’s voice character-
istics remain consistent. In the case of having only one style encoder, the
degree of deviation of the synthesized speech compared to the reference
speech is slightly larger.

5.3.2. Style extraction experiment

In the style extraction experiment, we utilized an additional tool*
for extracting emotion embeddings to derive emotion embeddings from
the synthesized audio. Subsequently, we applied the t-SNE method to
reduce the dimensionality of these emotion embeddings and performed
clustering, plotting the results on a two-dimensional coordinate system.
By examining the distribution of data points within this two-dimensional
space, we aimed to evaluate the ability of Control-TTS to effectively
distinguish between different speaking styles. In a similar vein, we also
assessed the capability of the baseline model, StyleTTS2, to differentiate
among various speaking styles, and we plotted these results alongside
those of Control-TTS in the same two-dimensional coordinate system
for comparative analysis.

4 https://github.com/ddIBoJack/emotion2vec.

Fig. 5 illustrates the synthesized results of Control-TTS for different
emotional reference speeches, where the emotions of sad, neutral, and
angry are distinctly clustered in three separate directions, demonstrating
a clear degree of separation. Although a degree of overlap is observed at
the boundaries between these emotional categories, Control-TTS signifi-
cantly outperforms the baseline model, StyleTTS2, in terms of emotional
distinction. As shown in the right panel of the figure, StyleTTS2 fails to
differentiate between the three emotions, resulting in a complete blend-
ing of emotional features during synthesis. In contrast, our proposed
Control-TTS effectively preserves the distinctions among these emotions,
highlighting its superior capability in emotion-aware speech synthesis.

5.4. Experiment on the integration of timbre and style

In the scenario where the model is provided with two distinct au-
dio inputs for the integration of timbre and style, a critical requirement
is the model’s ability to independently extract the timbre from the
speaker reference speech and the style from the style reference speech,
without conflating the timbres or styles of the two reference speeches.
Consequently, in this experiment, each test case we selected comprises
two different audio samples. For the speaker similarity metric, we con-
currently examine the synthesized audio’s similarity to both the speaker
reference and the style reference in terms of speaker characteristics.
Similarly, for the style similarity metric, we assess the synthesized au-
dio’s similarity to both references in terms of stylistic elements. It is only
when a discernible gap in similarity to the two references is observed for
the same metric that we can affirm the model’s correct extraction of the
timbre from the speaker reference speech and the style from the style
reference speech, rather than confusion between the two. In this experi-
ment, we have chosen StyleTTS2 as the baseline model for comparison.
We input two distinct reference speeches into StyleTTS2’s Prosodic Style
Encoder and Acoustic Style Encoder, respectively.

The experimental results are presented in Table 5, where each met-
ric is accompanied by an arrow indicating the desired direction of the
value—upward arrows denote that higher values are preferable, while

Table 5
The performance of the models on the integration of timbre and style.

Model Speaker Similarity with Style Similarity with
Speaker Style Speaker Style
Reference? Reference| Reference| Reference?

StyleTTS2 3.25 0.95 2.64 2.93

Control-TTS 4.25 0.58 2.05 3.53
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downward arrows signify that lower values are better. As evidenced by
the data in the table, Control-TTS exhibits a higher degree of speaker
similarity to the Speaker Reference and a lower degree to the Style
Reference, outperforming StyleTTS2 in both speaker similarity metrics.
Compared to StyleTTS2, Control-TTS more distinctly differentiates the
timbres of the two references, with the synthesized audio’s timbre being
closer to that of the Speaker Reference. Similarly, Control-TTS achieves
a higher style similarity to the Style Reference and a lower similarity
to the Speaker Reference, excelling over StyleTTS2 in the independent
extraction of the Style Reference’s style. These experimental outcomes
demonstrate that the Control-TTS model accurately extracts the timbre
from the speaker reference speech and the style from the style reference
speech, without conflating the timbres or styles of the two reference
speeches.

5.5. The impact of reference speech length on synthesis performance

To investigate the impact of reference speech length on the perfor-
mance of synthesized speech, we collected four categories of reference
speech with different durations: less than 2s, 2s-5s, 5s-10s, and 10s-20s.
We then evaluated the Mean Opinion Score (MOS) for speech quality,
speaker similarity, and style similarity under these four conditions, with
the experimental results illustrated in the line chart. In the design of the
proposed model, zero-padding is applied to all speech segments shorter
than 0.6s. The experimental results show that when the duration of
the reference audio is less than 2 s, the quality of the synthesized au-
dio decreases slightly, and when the duration reaches more than 2 s,
the quality of the synthesized audio tends to stabilize. Notably, longer
reference speech durations can slightly improve speaker similarity, indi-
cating that extended speech segments can provide more accurate speaker
representations (Fig. 6).

5.6. The impact of noisy reference audio on the synthesis performance

To verify the model’s robustness to noisy speech inputs, we designed
three types of noisy speech input experiments: specifically, experiments
where the speaker reference speech contains noise, where the style
reference speech contains noise, and where both reference speeches
contain noise. The experimental results are presented in Table 6. When
the speaker reference speech is noisy, the quality of the synthesized
speech decreases slightly. This is because the speaker encoder interprets
background noise as one of the speaker’s style characteristics, causing
the synthesized speech to replicate the noise and thus lower the Mean
Opinion Score (MOS) for quality, though it barely affects style similarity.
In contrast, the style encoder shows better robustness to noisy speech;
this is hypothesized to stem from the theoretical constraints of normal-
ized fundamental frequency and energy, which guide the style encoder
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Fig. 6. The impact of reference speech length on synthesis performance.
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Table 6
The impact of Chinese reference audio on synthesis performance.
Noise addition NMOS?t Speaker Style Similarityt WER/|
method Similarityt
Speaker Refernce 3.74 + 0.04 3.45 £ 0.02 3.53 £ 0.04 7.8
Style Reference 3.90 + 0.04 3.56 + 0.03 3.48 + 0.06 7.8
Both 3.71 + 0.04 3.43 £ 0.05 3.42 + 0.09 8.9
None 4.09 +0.13 3.69 + 0.17 3.66 + 0.11 3.1
Table 7
The impact of the amount of training data on synthesis performance.
Model NMOS?t Speaker Style WER|
Similarity?t Similarityt
Half training data 3.73+£0.11 3.52 + 0.09 3.35+£0.12 5.2
Original model 4.09 +0.13 3.69 + 0.17 3.66 + 0.11 3.1
Table 8
The impact of Chinese reference audio on synthesis performance.
Speaker + Style NMOSt Speaker Style WER|
Similarityt Similarityt
ch+ch 3.94 + 0.07 3.47 + 0.05 3.59+0.13 4.6
ch+en 4.02 +£0.13 3.56 + 0.02 3.61 + 0.06 4.4
en+ch 4.03 £ 0.05 3.63 £ 0.10 3.64 + 0.06 3.6
en+en 4.09 + 0.13 3.69 + 0.17 3.66 + 0.11 3.1

to ignore part of the noise, resulting in only a slight decrease in both the
quality and similarity of the synthesized speech.

5.7. The impact of the amount of training data on synthesis performance

In this experiment, we randomly sampled half of the original data
to train a new model. By comparing the differences in synthesis per-
formance between the new model and the original model, we explored
the impact of the amount of training data on the model’s synthesis per-
formance. Our test results are shown in the Table 7. After reducing the
amount of training data, the model’s performance on various metrics
decreased slightly compared to the original model. This indicates that
a larger amount of training data helps to improve the model’s synthesis
performance.

5.8. The impact of Chinese reference audio on synthesis performance

To verify the model’s generalization for cross-lingual reference
speech input tasks, experiments were conducted using Chinese data
from the ESD dataset, with results summarized in Table 8. Four com-
parative experimental groups were designed: “ch+ch” denotes both
speaker reference and style reference speech are in Chinese; “ch+en”
indicates a Chinese speaker reference paired with an English style refer-
ence; “en+ch” represents an English speaker reference combined with
a Chinese style reference.

It was observed that using Chinese speech as the speaker reference
leads to a slight decrease in speaker similarity, because the pronun-
ciation rules of different languages cause varying degrees of changes
in timbre. Meanwhile, whether Chinese or English is used as the emo-
tional reference, the style similarity and NMOS score of the synthesized
speech only show slight and comparable decreases. This indicates that
the decoder and style speech encoder in the proposed system have strong
cross-lingual generalization capabilities.

6. Conclusion

In the field of multimodal human-computer interaction, the de-
mand for customizable speech among users has become increasingly
prominent, especially in terms of precise control over timbre and
style. To address this core requirement, this paper proposes a novel
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task: Controllable Timbre Cloning and Style Replication with Reference
Speech Examples, and designs the Control-TTS model as a solution. The
model directly controls the speaker’s timbre and speaking style of the
synthesized speech through reference speech, extracting the timbre from
the speaker’s reference speech and the prosody from the speaking style
reference speech, respectively, thereby achieving the free combination
of the two. This effectively enhances the diversity of speech generation,
providing a more personalized speech output solution for multimodal
human-computer interaction scenarios.

To improve the accuracy of style replication, this paper innovatively
adopts a multi-encoder architecture to model speech style from multiple
dimensions, such as prosody and speaking rate. This multi-perspective
style feature capture mechanism can more comprehensively capture
style details in the reference speech, thus enabling faithful restoration
of the original style during generation.

Experimental results on the VcemDataset fully verify the effec-
tiveness of Control-TTS, as it achieves comparable or state-of-the-art
performance in key metrics, including naturalness mean opinion score
(NMOS), word error rate (WER), speaker similarity, and style similar-
ity. Meanwhile, the experiments further confirm that the strategy of
modeling speech style from different perspectives through multiple en-
coders significantly improves the cloning accuracy of style information,
providing strong support for achieving higher-quality style replication.
In summary, through the innovative task definition and model design,
Control-TTS breaks through the limitations of existing technologies in
the joint control of timbre and style, provides a new technical path for
personalized speech in multimodal human-computer interaction, and
is expected to promote the development of more natural and flexible
multimodal human-computer interaction systems.
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